These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphological aspects of particle uptake by lung phagocytes. Author: Geiser M. Journal: Microsc Res Tech; 2002 Jun 15; 57(6):512-22. PubMed ID: 12112434. Abstract: Macrophages residing on the inner epithelial surfaces of airways and alveoli are the only lung phagocytes exposed directly to the environment. Their phagocytic and microbicidal activities are essential for maintaining this organ in a clean and sterile state. The morphology of these phagocytes can be investigated in situ only after implementing special techniques, which involve intravascular triple-perfusion of aqueous fixatives or instillation of nonpolar ones. Such studies have revealed the engulfment of particles by these cells to be rapid, the process being essentially complete within a day. Particles are entrapped within phagosomes and the host cells eventually transported out of the lungs by mucociliary action, macrophages with higher loads being more rapidly eliminated than those with lower ones. Very small particles or those persisting on the epithelial surfaces may be taken up by the eponymous cells. Translocation of particles into the underlying connective tissue and their subsequent phagocytosis by interstitial macrophages prolongs their retention time in the lungs. The still poorly studied pleural macrophages might be involved in cell-mediated immune responses within the pleural space. Intravascular pulmonary macrophages figure largely in the phagocytosis of circulating particles. The role played by dendritic cells in particle uptake by the lungs is not well understood. Airway and alveolar macrophages are the primary phagocytes of the lung. In nonoverload situations and for particles >1 microm, a small proportion of those recruited suffices to remove material from the epithelial surface before other phagocytes, with an apparently greater immunological potential, gain access to it.[Abstract] [Full Text] [Related] [New Search]