These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular phenotype of Fragile X syndrome: FMRP, FXRPs, and protein targets.
    Author: Kaufmann WE, Cohen S, Sun HT, Ho G.
    Journal: Microsc Res Tech; 2002 May 01; 57(3):135-44. PubMed ID: 12112448.
    Abstract:
    Fragile X syndrome (FraX) is one of the most prevalent genetic causes of mental retardation. FraX is associated with an unstable expansion of a polymorphism within the 5' untranslated region of the FMR1 gene. The main consequence of this mutation is a reduction in the levels of the gene product (FMRP). FMRP is an RNA-binding protein with multiple spliced variants (isoforms) and high levels of expression in a variety of tissues, including neurons. In the latter cells, it is localized not only to the perikaryon but also to dendrites and dendritic spines. FMRP belongs to a family of proteins that includes the Fragile X Related Proteins or FXRPs. FXRPs share high homology in their functional domains with FMRP, and also associate with mRNA and components of the protein synthesis apparatus. However, FXRPs do not have the same temporo-spatial pattern of distribution (and other properties) of FMRP. Immunochemical assays have confirmed that a functionally uncompensated FMRP deficit is the essence of the FraX molecular phenotype. Here, we report our preliminary study on FXRPs levels in leukocytes from FraX males. By immunoblotting, we found that a marked reduction in FMRP levels is associated with a modest increase in FXR1P and no changes in FXR2P levels. The consequences of this reduced FMRP expression on protein synthesis, in other words, the identification of FMRP targets, can be studied by different molecular approaches including protein interaction and proteomics methods. By two-dimensional gel electrophoresis, we showed that in FraX leukocytes there is a defect in acetylation that involves prominently the regulatory protein annexin-1. Extension of current studies of the molecular phenotype to more brain-relevant tissue samples, a wider range of proteomics-based methods, and correlative analyses of FMRP homologues and FMRP targets with multiple behavioral measures, will greatly expand our understanding of FraX pathogenesis and it will help to develop and monitor new therapeutic strategies.
    [Abstract] [Full Text] [Related] [New Search]