These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.
    Author: Lu BZ, Chen WZ, Wang CX, Xu XJ.
    Journal: Proteins; 2002 Aug 15; 48(3):497-504. PubMed ID: 12112674.
    Abstract:
    The electrostatic force including the intramolecular Coulombic interactions and the electrostatic contribution of solvation effect were entirely calculated by using the finite difference Poisson-Boltzmann method (FDPB), which was incorporated into the GROMOS96 force field to complete a new finite difference stochastic dynamics procedure (FDSD). Simulations were performed on an insulin dimer. Different relative dielectric constants were successively assigned to the protein interior; a value of 17 was selected as optimal for our system. The simulation data were analyzed and compared with those obtained from 500-ps molecular dynamics (MD) simulation with explicit water and a 500-ps conventional stochastic dynamics (SD) simulation without the mean solvent force. The results indicate that the FDSD method with GROMOS96 force field is suitable to study the dynamics and structure of proteins in solution if used with the optimal protein dielectric constant.
    [Abstract] [Full Text] [Related] [New Search]