These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation.
    Author: Jo SH, Leblais V, Wang PH, Crow MT, Xiao RP.
    Journal: Circ Res; 2002 Jul 12; 91(1):46-53. PubMed ID: 12114321.
    Abstract:
    Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of beta2-adrenoceptor (beta2-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of beta2-AR-coupled G(i) proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the beta2-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the beta2-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables beta2-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in beta2-AR-induced cAMP formation. Blocking G(i) or Gbetagamma signaling with pertussis toxin or betaARK-ct, a peptide inhibitor of Gbetagamma, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of beta2-AR-PKA signaling sequentially involves G(i), Gbetagamma, and PI3K. Thus, PI3K constitutes a key downstream event of beta2-AR-G(i) signaling, which confines and negates the concurrent beta2-AR/G(s)-mediated PKA signaling.
    [Abstract] [Full Text] [Related] [New Search]