These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acceleration of Ambystoma tigrinum metamorphosis by corticotropin-releasing hormone. Author: Boorse GC, Denver RJ. Journal: J Exp Zool; 2002 Jun 15; 293(1):94-8. PubMed ID: 12115924. Abstract: Previous work of others and ours has shown that corticotropin-releasing hormone (CRH) is a positive stimulus for thyroid and interrenal hormone secretion in amphibian larvae and that activation of CRH neurons may mediate environmental effects on the timing of metamorphosis. These studies have investigated CRH actions in anurans (frogs and toads), whereas there is currently no information regarding the actions of CRH on metamorphosis of urodeles (salamanders and newts). We tested the hypothesis that CRH can accelerate metamorphosis of tiger salamander (Ambystoma tigrinum) larvae. We injected tiger salamander larvae with ovine CRH (oCRH; 1 microg/day; i.p.) and monitored effects on metamorphosis by measuring the rate of gill resorption. oCRH-injected larvae completed metamorphosis earlier than saline-injected larvae. There was no significant difference between uninjected and saline-injected larvae. Mean time to reach 50% reduction in initial gill length was 6.9 days for oCRH-injected animals, 11.9 days for saline-injected animals, and 14.1 days for uninjected controls. At the conclusion of the experiment (day 15), all oCRH-injected animals had completed metamorphosis, whereas by day 15, only 50% of saline-injected animals and 33% of uninjected animals had metamorphosed. Our results show that exogenous oCRH can accelerate metamorphosis in urodele larvae as it does in anurans. These findings suggest that the neuroendocrine mechanisms controlling metamorphosis are evolutionarily conserved across amphibian taxa.[Abstract] [Full Text] [Related] [New Search]