These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Further delineation of the chromosome 14q terminal deletion syndrome. Author: van Karnebeek CD, Quik S, Sluijter S, Hulsbeek MM, Hoovers JM, Hennekam RC. Journal: Am J Med Genet; 2002 Jun 01; 110(1):65-72. PubMed ID: 12116274. Abstract: A patient with hypotonia, blepharophimosis, ptosis, a bulbous nose, a long philtrum, upturned corners of the mouth, and mild developmental delay was found to have a small subtelomeric deletion of the long arm of chromosome 14 (q32.31-qter). In comparing her phenotype with previously reported patients with similar 14q deletions, due to either a linear deletion or to a ring chromosome 14, a clinically recognizable terminal 14q microdeletion syndrome was evident. Due to the limited number of cases reported, it was not possible to assign specific features to specific regions of terminal 14q. The comparison of features in cases with a linear deletion of 14qter (n = 19) to those in cases with a deletion due to a ring chromosome 14 (n = 23), both with the same breakpoint in 14q, showed that seizures and retinitis pigmentosa have been found only in patients with ring chromosomes. Several hypotheses are put forward to explain this difference: mitotic instability of ring chromosomes; a telomere position effect in ring chromosomes in which the 14p telomere silences nearby gene(s) on the q-arm; and dose-dependent gene(s) involved in seizures and retinitis pigmentosa located on the short arm of chromosome 14. In our opinion, only seizures may be explained by the mitotic instability of ring chromosomes, while both seizures and retinitis pigmentosa may be explained by silencing of gene(s) on 14q by the 14p telomere; the third hypothesis seems unlikely to explain either symptom.[Abstract] [Full Text] [Related] [New Search]