These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning, production and characterisation of a recombinant Cu/Zn superoxide dismutase from Taenia solium. Author: Castellanos-González A, Jiménez L, Landa A. Journal: Int J Parasitol; 2002 Aug; 32(9):1175-82. PubMed ID: 12117500. Abstract: A full-length complementary DNA clone encoding a cytosolic Cu/Zn superoxide dismutase with a M(r) of 15,588 Da was isolated from a Taenia solium larvae complementary DNA library. Comparison analysis of its deduced amino acid sequence revealed a 71% identity with Schistosoma mansoni, 57.2-59.8% with mammalian and less than 54% with other helminth cytosolic Cu/Zn superoxide dismutase. The characteristic motifs and the amino acid residues involved in coordinating copper and zinc enzymatic function are conserved. The T. solium Cu/Zn superoxide dismutase was expressed in the pRSET vector. Enzymatic and filtration chromatographic analysis showed a recombinant enzyme with an activity of 2,941 U/mg protein and a native M(r) of 37 kDa. Inhibition assays using KCN, H(2)O(2), NaN(3) and SDS indicated that Cu/Zn is the metallic cofactor in the enzyme. Thiabendazole (500 microM) and albendazole (300 microM) completely inhibited the activity of T. solium Cu/Zn superoxide dismutase. Thiabendazole had no effect on bovine Cu/Zn superoxide dismutase; in contrast, albendazole had a moderate effect on it at same concentrations. Antibodies against T. solium Cu/Zn superoxide dismutase did not affect the enzymatic function; nevertheless, it cross reacts with several Taenia species, but not with trematodes, nematodes, pig, human and bovine Cu/Zn superoxide dismutase enzymes. Western blot analysis indicated the enzyme was expressed in all stages. These results indicate that T. solium possesses a Cu/Zn superoxide dismutase enzyme that can protect him from oxidant-damage caused by the superoxide anion.[Abstract] [Full Text] [Related] [New Search]