These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different modes of NF-kappaB/Rel activation in pancreatic lobules.
    Author: Algül H, Tando Y, Beil M, Weber CK, Von Weyhern C, Schneider G, Adler G, Schmid RM.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2002 Aug; 283(2):G270-81. PubMed ID: 12121873.
    Abstract:
    The eukaryotic transcription factor nuclear factor-kappaB (NF-kappaB)/Rel is activated by a large variety of stimuli. It has been demonstrated that NF-kappaB/Rel is induced during the course of cerulein pancreatitis. Here, we show that NF-kappaB/Rel is differentially activated in pancreatic lobules. Cerulein induces NF-kappaB/Rel via activation of IkappaB kinase (IKK), which causes degradation of IkappaBalpha but not IkappaBbeta. Tumor necrosis factor-alpha-mediated IKK activation leads to IkappaBalpha and IkappaBbeta degradation. In contrast, oxidative stress induced by H(2)O(2) activates NF-kappaB/Rel independent of IKK activation and IkappaBalpha degradation; instead IkappaBalpha is phosphorylated on tyrosine. H(2)O(2) but not cerulein-mediated NF-kappaB/Rel activation can be blocked by stabilizing microtubules with Taxol. Inhibition of tubulin polymerization with nocodazole causes NF-kappaB/Rel activation in pancreatic lobules. These results propose three different pathways of NF-kappaB/Rel activation in pancreatic acinar cells. Furthermore, these data demonstrate that microtubules play a key role in IKK-independent NF-kappaB/Rel activation following oxidative stress.
    [Abstract] [Full Text] [Related] [New Search]