These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of Go-coupled dopamine D2 receptors inhibits ERK1/ERK2 in pituitary cells. A key step in the transcriptional suppression of the prolactin gene.
    Author: Liu JC, Baker RE, Sun C, Sundmark VC, Elsholtz HP.
    Journal: J Biol Chem; 2002 Sep 27; 277(39):35819-25. PubMed ID: 12121979.
    Abstract:
    In pituitary lactotrophs the prolactin gene is stimulated by neuropeptides and estrogen and is suppressed by dopamine via D2-type receptors. Stimulatory signals converge on activation of the mitogen-activated protein kinases ERK1/2, but dopamine regulation of this pathway is not well defined. Paradoxically, D2 agonists activate ERK1/2 in many cell types. Here we show that in prolactin-secreting GH4ZR7 cells and primary pituitary cells, dopamine treatment leads to a rapid, pronounced, and specific decrease in activated ERK1/2. The response is blocked by D2-specific antagonists and pertussis toxin. Interestingly, in stable lines expressing specific pertussis toxin-resistant Galpha subunits, toxin treatment blocks dopamine suppression of MAPK in Galpha(i2)- but not Galphao-expressing cells, demonstrating that G(o)-dependent pathways can effect the inhibitory MAPK response. At the nuclear level, the MEK1 inhibitor U0126 mimics the D2-agonist bromocryptine in suppressing levels of endogenous prolactin transcripts. Moreover, a good correlation is seen between the IC(50) values for inhibition of MEK1 and suppression of prolactin promoter function (PD184352 > U0126 > U0125). Both dopamine and U0126 enhance the nuclear localization of ERF, a MAPK-sensitive ETS repressor that inhibits prolactin promoter activity. In addition, U0126 suppression is transferred by tandem copies of the Pit-1-binding site, consistent with mapping experiments for dopamine responsiveness. Our data suggest that ERK1/2 suppression is an obligatory step in the dopaminergic control of prolactin gene transcription and that bidirectional control of ERK1/2 function in the pituitary may provide a key mechanism for endocrine gene control.
    [Abstract] [Full Text] [Related] [New Search]