These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Author: Yu JG, Malm C, Thornell LE. Journal: Histochem Cell Biol; 2002 Jul; 118(1):29-34. PubMed ID: 12122444. Abstract: High force eccentric muscle contractions can result in delayed onset muscle soreness (DOMS), prolonged loss of muscle strength, decreased range of motion, muscle swelling and an increase of muscle proteins in the blood. At the ultrastructural level Z-line streaming and myofibrillar disruptions have been taken as evidence for muscle damage. In animal models of eccentric exercise-induced injury, disruption of the cytoskeleton and the sarcolemma of muscle fibres occurs within the first hour after the exercise, since a rapid loss of staining of desmin, a cytoskeletal protein, and the presence of fibronectin, a plasma and extracellular protein, are observed within the muscle fibres. In the present study, biopsies from subjects who had performed different eccentric exercises and had developed DOMS were examined. Our aim was to determine whether eccentric exercise leading to DOMS causes sarcolemmal disruption and loss of desmin in humans. Our study shows that even though the subjects had DOMS, muscle fibres had neither lost staining for desmin nor contained plasma fibronectin. This study therefore does not support previous conclusions that there is muscle fibre degeneration and necrosis in human skeletal muscle after eccentric exercise leading to DOMS. Our data are in agreement with the recent findings that there is no inflammatory response in skeletal muscle following eccentric exercise in humans. In combination, these findings should stimulate the search for other mechanisms explaining the functional and structural alterations in human skeletal muscle after eccentric exercise.[Abstract] [Full Text] [Related] [New Search]