These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection.
    Author: Stange G, Stowe S, Chahl JS, Massaro A.
    Journal: J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jul; 188(6):455-67. PubMed ID: 12122464.
    Abstract:
    It is suggested that the dragonfly median ocellus is specifically adapted to detect horizontally extended features rather than merely changes in overall intensity. Evidence is presented from the optics, tapetal reflections and retinal ultrastructure. The underfocused ocelli of adult insects are generally incapable of resolving images. However, in the dragonfly median ocellus the geometry of the lens indicates that some image detail is present at the retina in the vertical dimension. Details in the horizontal dimension are blurred by the strongly astigmatic lens. In the excised eye the image of a point source forms a horizontal streak at the level of the retina. Tapetal reflections from the intact eye show that the field of view is not circular as in most other insects but elliptical with the major axis horizontal, and that resolution in the vertical direction is better than in the horizontal. Measurements of tapetal reflections in locust ocelli confirm their visual fields are wide and circular and their optics strongly underfocused. The ultrastructure suggests adaptation for resolution, sensitivity and a high metabolic rate, with long, widely separated rhabdoms, retinulae cupped by reflecting pigment, abundant tracheoles and mitochondria, and convoluted, amplified retinula cell plasma membranes.
    [Abstract] [Full Text] [Related] [New Search]