These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Re-engineering butyrylcholinesterase as a cocaine hydrolase. Author: Sun H, Pang YP, Lockridge O, Brimijoin S. Journal: Mol Pharmacol; 2002 Aug; 62(2):220-4. PubMed ID: 12130672. Abstract: To address the problem of acute cocaine overdose, we undertook molecular engineering of butyrylcholinesterase (BChE) as a cocaine hydrolase so that modest doses could be used to accelerate metabolic clearance of this drug. Molecular modeling of BChE complexed with cocaine suggested that the inefficient hydrolysis (k(cat) = 4 min(-1)) involves a rotation toward the catalytic triad, hindered by Tyr332. To eliminate rotational hindrance and retain substrate affinity, we introduced two amino acid substitutions (Ala328Trp/Tyr332Ala). The resulting mutant BChE reduced cocaine burden in tissues, accelerated plasma clearance by 20-fold, and prevented cocaine-induced hyperactivity in mice. The enzyme's kinetic properties (k(cat) = 154 min(-1), K(M) = 18 microM) satisfy criteria suggested previously for treating cocaine overdose (k(cat) >120 min(-1), K(M) < 30 microM). This success demonstrates that computationally guided mutagenesis can generate functionally novel enzymes with clinical potential.[Abstract] [Full Text] [Related] [New Search]