These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways.
    Author: Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC.
    Journal: Anesthesiology; 2002 Jul; 97(1):4-14. PubMed ID: 12131097.
    Abstract:
    BACKGROUND: Volatile anesthetics induce pharmacological preconditioning in cardiac tissue. The purpose of this study was to test whether volatile anesthetics mediate this effect by activation of the mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) or sarcolemmal K(ATP) (sarcK(ATP)) channel in rat ventricular myocytes and to evaluate the signaling pathways involved. METHODS: A cellular model of ischemia with subsequent hypoosmolar trypan blue staining served to determine the effects of 5-hydroxydecanoate, a selective mitoK(ATP) channel blocker, HMR-1098, a selective sarcK(ATP) channel blocker, diazoxide, a preconditioning mimicking agent, and various modulators of putative signaling pathways on cardioprotection elicited by sevoflurane and isoflurane. Microscopy was used to visualize and measure autofluorescence of flavoproteins, a direct index of mitoK(ATP) channel activity. RESULTS: Volatile anesthetics significantly enhanced diazoxide-mediated activation of mitoK(ATP) channels as assessed by autofluorescence of myocytes. Conversely, volatile anesthetics alone did not alter mitoK(ATP) channel activity, implying a priming effect of volatile anesthetics on mitoK(ATP) channels. Administration of the protein kinase C inhibitor chelerythrine completely blocked this effect. Also, pretreatment with volatile anesthetics potentiated diazoxide-mediated protection against ischemia, as indicated by a reduction in trypan blue-positive myocytes. Importantly, cardioprotection afforded by volatile anesthetics was unaffected by the sarcK(ATP) channel blocker HMR-1098 but sensitive to modulations of nitric oxide and adenosine-G(i) signaling pathways. CONCLUSIONS: Using autofluorescence in live cell imaging microscopy and a simulated model of ischemia, the authors present evidence that volatile anesthetics mediate their protection in cardiomyocytes by selectively priming mitoK(ATP) channels through multiple triggering protein kinase C-coupled signaling pathways. These observations provide important new insight into the mechanisms of anesthetic-induced preconditioning.
    [Abstract] [Full Text] [Related] [New Search]