These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Age and contraction type influence motor output variability in rapid discrete tasks. Author: Christou EA, Carlton LG. Journal: J Appl Physiol (1985); 2002 Aug; 93(2):489-98. PubMed ID: 12133855. Abstract: The purpose of this study was to examine the ability to control knee-extension force during discrete isometric (IC), concentric (CC), and eccentric contractions (EC) in 24 young (mean age +/- SD = 25.3 +/- 2.8 yr) and 24 old (mean age +/- SD = 73.3 +/- 5.5 yr) healthy and active individuals. Subjects were to match a parabola with a time to peak force of 200 ms during IC, CC, and EC at six target levels of force [20, 35, 50, 65, 80, and 90% of the maximum voluntary contraction (MVC)]. ICs were performed at 90 degrees of knee flexion, whereas CCs and ECs ranged from 90 to 80 degrees of knee flexion (0 degrees is full extension) at a slow velocity (25 degrees /s). Results showed that subjects produced similar MVC forces for the three types of contractions. Young subjects produced greater MVC forces than old subjects, and within each age group, men produced greater force than women. The variability (standard deviation) of peak force and impulse in absolute values was greater for young compared with old subjects. When variability was normalized to the force produced [coefficient of variation (CV)], however, old subjects exhibited greater CV than young subjects for peak force and impulse. Both the standard deviation and CV of time to peak force and impulse duration were greater for the old adults. In general, ECs were more variable than ICs and CCs, and old adults exhibited greater CV compared with young adults during rapid, discrete ICs, CCs, and particularly ECs of the quadriceps.[Abstract] [Full Text] [Related] [New Search]