These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Author: Bhattacharyya S, Kerzmann A, Feig AL. Journal: Eur J Biochem; 2002 Jul; 269(14):3425-32. PubMed ID: 12135481. Abstract: Uridine-5'-diphospho-1-alpha-d-glucose (UDP-Glc) is a common substrate used by glucosyltransferases, including certain bacterial toxins such as Toxins A and B from Clostridium difficile. Fluorescent analogs of UDP-Glc have been prepared for use in our studies of the clostridial toxins. These compounds are related to the methylanthraniloyl-ATP compounds commonly used to probe the chemistry of ATP-dependent enzymes. The reaction of excess methylisatoic anhydride with UDP-Glc in aqueous solution yields primarily the 2' and 3' isomers of methylanthraniloyl-UDP-Glc (MUG). As the 2' and 3' isomers readily interconvert, this isomeric mixture was copurified by HPLC away from the other isomeric products, and was characterized by a combination of NMR, fluorescence and mass spectrometric methods. TcdA binds MUG competitively with respect to UDP-Glc with an affinity of 15 +/- 2 microm in the absence of Mg2+. There is currently no evidence that the fluorescent substrate analog is turned over by the toxin in either glucosyltransferase or glucosylhydrolase reactions. Using a competition assay, the affinity of UDP-Glc was determined to be 45+/-10 microm in the absence of Mg2+. The binding of UDP-Glc and Mg2+ are highly coupled with Mg2+ affinities in the range of 90-600 microm, depending on the experimental conditions. These results imply that one of the significant roles of the metal ion might be to stabilize the enzyme-substrate complex prior to initiation of the transferase chemistry.[Abstract] [Full Text] [Related] [New Search]