These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proteinase-3, a serine protease which mediates doxorubicin-induced apoptosis in the HL-60 leukemia cell line, is downregulated in its doxorubicin-resistant variant.
    Author: Wu CH, Gordon J, Rastegar M, Ogretmen B, Safa AR.
    Journal: Oncogene; 2002 Aug 01; 21(33):5160-74. PubMed ID: 12140766.
    Abstract:
    We report here that expression of proteinase 3 (PR3), a serine protease, is down-regulated in the HL60/ADR multidrug resistant variant of the human myelogenous leukemia cell line HL-60, and that down-regulation of PR3 is associated with doxorubicin (DOX) resistance in these cells. To determine whether PR3 is involved in DOX-induced apoptosis in HL-60 cells, and whether its loss causes resistance to DOX, we inhibited PR3 expression by an anti-sense PR3 oligodeoxynucleotide and showed that inhibition of PR3 expression results in a significant reduction in DOX-induced DNA fragmentation and increased resistance to DOX-induced apoptosis. Our results revealed that PR3-mediated DOX-induced apoptosis in HL-60 cells is independent of the loss of mitochondrial membrane potential (deltapsi(m)) and activation of the caspase-8 and -9 pathways. Moreover, while PR3 is involved in the cleavage of caspase-3, PR3-mediated DOX-induced DNA fragmentation and apoptosis were not prevented by a specific inhibitor of caspase-3. These data suggest that activation of caspase-3 alone is not sufficient to trigger PR3-mediated DOX-induced apoptosis. Treatment with an anti-PR3 oligomer significantly decreased reactive oxygen species (ROS) generation in cells treated with low concentrations of DOX, revealing a role for PR3 in enhancing production of DOX-induced ROS. Moreover, DOX-induced apoptosis at 0.001-0.01 microM was only inhibited in HL-60 cells pre-treated with the antioxidant N-acetyl-cysteine in the absence of anti-PR3, revealing that DOX-induced apoptosis in these cells is PR3- and ROS-dependent. Our results show that PR3 is involved in DOX-induced ROS-dependent apoptosis and that its loss is associated with resistance to DOX in HL-60 cells.
    [Abstract] [Full Text] [Related] [New Search]