These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes.
    Author: Ying W, Chen Y, Alano CC, Swanson RA.
    Journal: J Cereb Blood Flow Metab; 2002 Jul; 22(7):774-9. PubMed ID: 12142562.
    Abstract:
    The DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), contributes to cell death during ischemia/reperfusion when extensively activated by DNA damage. The cell death resulting from PARP1 activation is linked to NAD+ depletion and energy failure, but the intervening steps are not well understood. Because glycolysis requires cytosolic NAD+, the authors tested whether PARP1 activation impairs glycolytic flux and whether substrates that bypass glycolysis can rescue cells after PARP1 activation. PARP1 was activated in mouse cortical astrocyte and astrocyte-neuron cocultures with the DNA alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Studies using the 2-deoxyglucose method confirmed that glycolytic flux was reduced by more than 90% in MNNG-treated cultures. The addition of 5 mmol/L of alpha-ketoglutarate, 5 mmol/L pyruvate, or other mitochondrial substrates to the cultures after MNNG treatment reduced cell death from approximately 70% to near basal levels, while PARP inhibitors and excess glucose had negligible effects. The mitochondrial substrates significantly reduced cell death, with delivery delayed up to 2 hours after MNNG washout. The findings suggest that impaired glycolytic flux is an important factor contributing to PARP1-mediated cell death. Delivery of alternative substrates may be a promising strategy for delayed treatment of PARP1-mediated cell death in ischemia and other disorders.
    [Abstract] [Full Text] [Related] [New Search]