These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ACTH promotion of p27(Kip1) induction in mouse Y1 adrenocortical tumor cells is dependent on both PKA activation and Akt/PKB inactivation.
    Author: Forti FL, Schwindt TT, Moraes MS, Eichler CB, Armelin HA.
    Journal: Biochemistry; 2002 Aug 06; 41(31):10133-40. PubMed ID: 12146978.
    Abstract:
    Here we report antimitogenic mechanisms activated by the adrenocorticotropic hormone (ACTH) in the mouse Y1 adrenocortical tumor cell line. ACTH receptors activate the Galphas/adenylate cyclase cAMP/PKA pathway to promote dephosphorylation of Akt/PKB enzymes, leading to induction of the cyclin-dependent kinases' (CDKs) inhibitor p27(Kip1). Y1 cells display high constitutive levels of phosphorylated Akt/PKB dependent on chronically elevated c-Ki-Ras.GTP and PI3K activity. Expression of the dominant negative mutant RasN17 in Y1 cells results in strong reduction of both c-Ki-Ras.GTP and phosphorylated Akt/PKB, which are restored by FGF2 treatments. Inhibitors of PI3K lead to rapid dephosphorylation of Akt/PKB and block phosphorylation of Akt/PKB promoted by FGF2. ACTH rapidly promotes dephosphorylation of Akt/PKB in Y1 adrenal cells, while constitutively high levels of c-Ki-Ras.GTP remain unchanged. ACTH and cAMP elevating agents fail to cause Akt/PKB dephosphorylation in PKA-deficient clonal mutants of Y1 cells. In addition, cholera toxin, forskolin, and 8BrcAMP all mimic ACTH, causing dephosphorylation of Akt/PKB in wild-type Y1 cells. ACTH is unable to prevent Akt/PKB phosphorylation, promoted by FGF2 in clonal lines of RasN17-Y1 transfectants displaying negligible levels of c-Ki-Ras.GTP. ACTH promotes strong p27(Kip1) protein induction in wild-type Y1 adrenocortical cells but not in PKA-deficient Y1-clonal mutants nor in RasN17-Y1 transfectants. PI3K inhibitors induce p27(Kip1) protein in all cells studied, i.e., wild type and transfectants. The inverse correlation between levels of phosphorylated Akt/PKB and of p27(Kip1) protein caused by ACTH suggests a novel antimitogenic pathway activated by ACTH and mediated by cAMP/PKA in the mouse Y1 adrenocortical tumor cell line.
    [Abstract] [Full Text] [Related] [New Search]