These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: N-methyl-D-aspartate receptor and L-type voltage-gated Ca(2+) channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia. Author: Zhang C, Shen W, Zhang G. Journal: Neurosci Lett; 2002 Aug 16; 328(3):265-8. PubMed ID: 12147322. Abstract: Transient global ischemia reportedly results in glutamate receptor stimulation and harmful Ca(2+)-overloading, then activates some proteins involved in cell apoptosis in vivo and in vitro, but underlying mechanisms remain to be elucidated. Here we evaluated the role of N-methyl-D-aspartate (NMDA) receptor antagonist and L-type voltage-gated Ca(2+) channel (L-VGCC) antagonist in mediating the release of cytochrome c and the expression of caspase-3 precursor protein (procaspase-3). Cytochrome c release from mitochondria is a critical step in the cell apoptotic process. We examined whether cytochrome c was translocated from mitochondria to the cytosol by Western blot in rat hippocampus after 15 min global ischemia. Released cytochrome c interacts with apoptotic protease activating factor-1 and caspase-9, both of which play important roles in the cytochrome c-dependent mitochondrial pathway of apoptosis by activating caspase-3. Our studies demonstrated that the inactive precursor and active cleaved subunits of caspase-3 protease increased dramatically with the extent of reperfusion time. Following pretreatment with ketamine (a non-competitive NMDA receptor antagonist) and nifedipine (L-VGCC antagonist), cytosolic cytochrome c and the expression of procaspase-3 dramatically decreased, which might result in less neuron damage after ischemia.[Abstract] [Full Text] [Related] [New Search]