These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Support vector machines for the classification and prediction of beta-turn types. Author: Cai YD, Liu XJ, Xu XB, Chou KC. Journal: J Pept Sci; 2002 Jul; 8(7):297-301. PubMed ID: 12148778. Abstract: The support vector machines (SVMs) method is proposed because it can reflect the sequence-coupling effect for a tetrapeptide in not only a beta-turn or non-beta-turn, but also in different types of beta-turn. The results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for beta-turn types I, I', II, II', VI and VIII and non-beta-turns are 99.92%, 96.8%, 98.02%, 97.75%, 100%, 97.19% and 100%, respectively. Using these training data, the rate of correct prediction by the SVMs for a given protein: rubredoxin (54 residues. 51 tetrapeptides) which includes 12 beta-turn type I tetrapeptides, 1 beta-turn type II tetrapeptide and 38 non-beta-turns reached 82.4%. The high quality of prediction of the SVMs implies that the formation of different beta-turn types or non-beta-turns is considerably correlated with the sequence of a tetrapeptide. The SVMs can save CPU time and avoid the overfitting problem compared with the neural network method.[Abstract] [Full Text] [Related] [New Search]