These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: G(q/11) is involved in insulin-stimulated inositol phosphoglycan putative mediator generation in rat liver membranes: co-localization of G(q/11) with the insulin receptor in membrane vesicles.
    Author: Sleight S, Wilson BA, Heimark DB, Larner J.
    Journal: Biochem Biophys Res Commun; 2002 Jul 12; 295(2):561-9. PubMed ID: 12150987.
    Abstract:
    Insulin signaling to generate inositol phosphoglycans (IPGs) was demonstrated to occur via the participation of the heterotrimeric G-proteins G(q/11). IPGs were measured as two specific inositol markers, myo-inositol and chiro-inositol after strong acid hydrolysis. Insulin and Pasteurella multocida toxin (PMT) generated both myo-inositol and chiro-inositol IPGs in a dose-dependent manner. PMT has been shown to activate G(q) specifically. Insulin action was abrogated by pre-treatment with anti G(q/11) antibody. Western blotting demonstrated the enrichment of both insulin receptor beta subunit and G(q/11) in the liver membrane vesicles. Vesicles also contained clathrin, caveolin PLC beta 1 and PLC Delta. Immunogold staining revealed the co-localization of both insulin receptor beta subunit and G(q/11) in an approximate stochiometric ratio of 1:3. No vesicles were detected with either component alone. The present and considerable published data provide strong evidence for insulin signaling both via a tyrosine kinase cascade mechanism and via heterotrimeric G-protein interactions.
    [Abstract] [Full Text] [Related] [New Search]