These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidant-induced hypertrophy of A549 cells is accompanied by alterations in eukaryotic translation initiation factor 4E and 4E-binding protein-1. Author: Shenberger JS, Adams MH, Zimmer SG. Journal: Am J Respir Cell Mol Biol; 2002 Aug; 27(2):250-6. PubMed ID: 12151318. Abstract: Control of protein synthesis resides at the level of eukaryotic translation initiation (eIF) complex formation. Complex formation is regulated by the mRNA cap-binding protein, eIF4E, whose activity is influenced by phosphorylation and binding to 4E-binding protein 1 (4E-BP1). To provide a link between alterations in protein synthesis and the pathogenesis of oxidant-mediated lung disease, we investigated the effect of hydrogen peroxide (H2O2) on actively growing A549 cells. Cells were exposed to 200 or 400 microM H2O2 for 4 h and then assessed for changes in proliferation, protein synthesis, and eIF4E and 4E-BP1 status over 72 h. We found that both concentrations of H2O2 inhibited [3H]thymidine incorporation and cell division while inducing a G2/M-predominant growth arrest within 24 h. In addition, H2O2 increased cell size, [3H]leucine incorporation/cell, and total cell protein. Although time had little effect on eIF4E and 4E-BP1 expression and phosphorylation state of control cells, H2O2 induced a 2- to 3-fold increase in eIF4E and 4E-BP1 expression, a 5-fold increase in eIF4E phosphorylation, and a shift in the distribution of 4E-BP1 phosphorylation favoring lesser phosphorylated forms. These findings suggest that oxidant-mediated alterations in protein synthesis and cell morphology occur in concert with changes in factors known to regulate translation kinetics.[Abstract] [Full Text] [Related] [New Search]