These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extrusion of intracellular calcium ion after in vitro ischemia in the rat hippocampal CA1 region.
    Author: Tanaka E, Uchikado H, Niiyama S, Uematsu K, Higashi H.
    Journal: J Neurophysiol; 2002 Aug; 88(2):879-87. PubMed ID: 12163539.
    Abstract:
    Simultaneous recordings of intracellular Ca(2+) ([Ca(2+)](i)) signal and extracellular DC potential were obtained from the CA1 region in 1-[6-amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranyloxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid penta-acetoxymethyl ester (Fura-2/AM)-loaded rat hippocampal slices. Superfusion with oxygen- and glucose-deprived medium (in vitro ischemia) for 5-6 min produced a rapid rise of the [Ca(2+)](i) level in the stratum radiatum (rising phase of the [Ca(2+)](i) signal), which occurred simultaneously with a rapid negative DC potential (rapid negative potential). When oxygen and glucose were reintroduced, the increased [Ca(2+)](i) signal diminished rapidly (falling phase of the [Ca(2+)](i) signal) during the generation of a slow negative DC potential (slow negative potential), which occurred within 1 min from the onset of the reintroduction. Thereafter, the [Ca(2+)](i) signal partially and the slow negative potential completely returned to the preexposure level approximately 6 min after the reintroduction. The changes in [Ca(2+)](i) signal during and after in vitro ischemia were very similar to the changes in the membrane potential of glial cells. The rising and falling phases of [Ca(2+)](i) signal corresponded to the rapid depolarization and a depolarizing hump, respectively, in the repolarizing phase of glial cells. A prolonged application of in vitro ischemia or a reintroduction of either glucose or oxygen suppressed the falling phase after ischemic exposure. The application of ouabain (30 microM) generated both a rapid negative potential and a rapid elevation of [Ca(2+)](i), but no slow negative potential or rapid reduction in [Ca(2+)](i) were observed. When oxygen and glucose were reintroduced to slices in the Na(+)-free or ouabain- or Ni(2+)-containing medium, the falling phase was suppressed. The falling phase was significantly accelerated in Ca(2+)- and Mg(2+)-free with EGTA-containing medium. In contrast, the falling phase was significantly slower in the Ca(2+)-free with high Mg(2+)- and EGTA-containing medium. The falling phase of the [Ca(2+)](i) signal after ischemic exposure is thus considered to be primarily dependent on the reactivation of Na(+), K(+)-ATPases, while the extrusion of cytosolic Ca(2+) via the forward-mode operation of Na(+)/Ca(2+) exchangers in glial cells is thought to be directly involved in the rapid reduction of [Ca(2+)](i) after ischemic exposure.
    [Abstract] [Full Text] [Related] [New Search]