These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential gene expression in a cell culture model of SOD1-related familial motor neurone disease.
    Author: Kirby J, Menzies FM, Cookson MR, Bushby K, Shaw PJ.
    Journal: Hum Mol Genet; 2002 Aug 15; 11(17):2061-75. PubMed ID: 12165567.
    Abstract:
    Motor neurone disease is caused by mutations in Cu/Zn superoxide dismutase (SOD1) in 15-20% of familial cases, due to a toxic gain of function by the mutant enzyme. However, the underlying mechanism of SOD1-mediated neurodegeneration remains uncertain. By investigating alterations in gene expression in the presence of mutant Cu/Zn SOD, we aimed to identify pathways that contribute to motor neurone injury and cell death. Using a cellular model of familial motor neurone disease, the motor neuronal cell line NSC34 was stably transfected with either normal or mutant (G37R, G93A, I113T) SOD1 cDNAs, and the effect of the presence of these proteins on gene expression was analysed. This model allowed gene expression changes to be studied specifically in cells with a motor neurone phenotype, without interference from genes expressed by glia, astrocytes and other cell types located in the central nervous system. Using a commercially available cDNA membrane array, we investigated the expression levels of 588 genes from key biological pathways. Gene expression was studied in the cells under both basal culture conditions and following oxidative stress induced by serum withdrawal. Twenty-nine differentially expressed genes were identified, 7 of which were specifically downregulated in the presence of the mutant Cu/Zn SOD protein, and whose expression was further studied by real-time PCR. Presence of the mutant Cu/Zn SOD was confirmed to lead to a decrease in expression of KIF3B, a kinesin-like protein, which forms part of the KIF3 molecular motor. c-Fes, thought to be involved in intracellular vesicle transport was also decreased, further implicating the involvement of vesicular trafficking as a mode of action for mutant Cu/Zn SOD. In addition, a decrease was confirmed in ICAM1, a response in part due to the increased expression of SOD1, and decreased Bag1 expression was confirmed in two of the three mutant cell lines, providing further support for the involvement of apoptosis in SOD1-associated motor neurone death.
    [Abstract] [Full Text] [Related] [New Search]