These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Author: Stiles BG, Hale ML, Marvaud JC, Popoff MR. Journal: Biochem J; 2002 Nov 01; 367(Pt 3):801-8. PubMed ID: 12175336. Abstract: Clostridium perfringens type E iota toxin consists of two unlinked proteins designated as iota a (Ia; molecular mass approximately 47 kDa), an ADP-ribosyltransferase and iota b (Ib; molecular mass approximately 81 kDa) which binds to the cell surface and facilitates Ia entry into the cytosol. By Western-blot analysis, Ib incubated with Vero cells at 37 degrees C generated a cell-associated, SDS-insoluble oligomer of Ib (molecular mass>220 kDa) within 15 s, which was still evident 110 min after washing cells. Ib oligomerization was temperature, but not pH, dependent and was facilitated by a cell-surface protein(s). Within 5 min at 37 degrees C, cell-bound Ib generated Na(+)/K(+) permeable channels that were blocked by Ia. However, Ib-induced channels or oligomers were not formed at 4 degrees C. Two monoclonal antibodies raised against Ib that recognize unique, neutralizing epitopes within residues 632-655 either inhibited Ib binding to cells and/or oligomerization, unlike a non-neutralizing monoclonal antibody that binds within Ib residues 28-66. The Ib protoxin (molecular mass approximately 98 kDa), which does not facilitate iota cytotoxicity but binds to Vero cells, did not oligomerize or form ion-permeable channels on cells, and neither trypsin nor chymotrypsin treatment of cell-bound Ib protoxin induced large complex formation. The link between Ib oligomers and iota toxicity was also apparent with a resistant cell line (MRC-5), which bound to Ib with no evidence of oligomerization. Overall, these studies revealed that the biological activity of iota toxin is dependent on a long-lived, cell-associated Ib complex that rapidly forms ion-permeable channels in cell membranes. These results further reveal the similarities of C. perfringens iota toxin with other bacterial binary toxins produced by Bacillus anthracis and C. botulinum.[Abstract] [Full Text] [Related] [New Search]