These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Attenuated Salmonella enterica serovar Typhi expressing urease effectively immunizes mice against Helicobacter pylori challenge as part of a heterologous mucosal priming-parenteral boosting vaccination regimen. Author: Londoño-Arcila P, Freeman D, Kleanthous H, O'Dowd AM, Lewis S, Turner AK, Rees EL, Tibbitts TJ, Greenwood J, Monath TP, Darsley MJ. Journal: Infect Immun; 2002 Sep; 70(9):5096-106. PubMed ID: 12183559. Abstract: Recombinant vaccine strains of Salmonella enterica serovar Typhi capable of expressing Helicobacter pylori urease were generated by transforming strains CVD908 and CVD908-htrA with a plasmid harboring the ureAB genes under the control of an in vivo-inducible promoter. The plasmid did not interfere with the ability of either strain to replicate and persist in human monocytic cells or with their transient colonization of mouse lungs. When administered to mice intranasally, both recombinant strains elicited antiurease immune responses skewed towards a Th1 phenotype. Vaccinated mice exhibited strong immunoglobulin G2a (IgG2a)-biased antiurease antibody responses as well as splenocyte populations capable of proliferation and gamma interferon (IFNgamma) secretion in response to urease stimulation. Boosting of mice with subcutaneous injection of urease plus alum enhanced immune responses and led them to a more balanced Th1/Th2 phenotype. Following parenteral boost, IgG1 and IgG2a antiurease antibody titers were raised significantly, and strong urease-specific splenocyte proliferative responses, accompanied by IFNgamma as well as interleukin-4 (IL-4), IL-5, and IL-10 secretion, were detected. Neither immunization with urease-expressing S. enterica serovar Typhi alone nor immunization with urease plus alum alone conferred protection against challenge with a mouse-adapted strain of H. pylori; however, a vaccination protocol combining both immunization regimens was protective. This is the first report of effective vaccination against H. pylori with a combined mucosal prime-parenteral boost regimen in which serovar Typhi vaccine strains are used as antigen carriers. The significance of these findings with regard to development of a human vaccine against H. pylori and modulation of immune responses by heterologous prime-boost immunization regimens is discussed.[Abstract] [Full Text] [Related] [New Search]