These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction. Author: Sangild PT, Schmidt M, Elnif J, Björnvad CR, Weström BR, Buddington RK. Journal: Pediatr Res; 2002 Sep; 52(3):416-24. PubMed ID: 12193678. Abstract: Maturation of the fetal gastrointestinal tract (GIT) is influenced by both luminal stimuli (e.g. swallowed fluid) and hormonal factors (e.g. endogenous cortisol release). The aims of the present study were 1) to investigate GIT growth and maturation during the last 20% of gestation in pigs (term = 114 +/- 2 d), and 2) to investigate the effect of esophageal ligation, to prevent fetal swallowing, at 80% to 91% gestation. In normal fetuses, marked increases occurred during late gestation in body weight (+95%), relative intestinal weight (+79%, g kg(-1) body weight), activity of some digestive enzymes (1.5- to 10-fold), and absorption of glucose and intact proteins (3- to 6-fold). Fetuses with ligated esophagi had lowered body weight (-20%), reduced intestinal weight (-43%), aminopeptidase A activity (-24%), and glucose absorption (-27%), while lactase, sucrase, and dipeptidylpeptidase IV activities were increased (+40-50%), compared with sham-operated fetuses (all p < 0.05). Other parameters of GIT function remained unchanged by esophageal obstruction (absorption of amino acids and immunoglobulin, activity of chymosin, amylase, trypsin, chymotrypsin, maltase, aminopeptidase N -- all expressed per gram GIT tissue). Ligated fetuses had elevated cortisol levels, which is known to stimulate fetal GIT maturation. We conclude that the rapid development of GIT function in late gestation is diminished by esophageal obstruction, mainly due to slower GIT growth and not inhibition of normal functional development of enterocytes.[Abstract] [Full Text] [Related] [New Search]