These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA double strand break induction in yeast. Author: Kiefer J, Egenolf R, Ikpeme SE. Journal: Radiat Prot Dosimetry; 2002; 99(1-4):269-72. PubMed ID: 12194303. Abstract: The induction of DNA double strand breaks (DSBs) by accelerated heavy ions was systematically measured in diploid yeast cells. Particles were provided by the accelerators at GSI, Darmstadt, and HMI, Berlin. DNA was separated using pulsed field gel electrophoresis and the intensity of the largest bands used to determine the loss of molecular weight. Since the DNA content of each chromosome is exactly known absolute values for DSB induction can be measured without calibration procedures. Ions used range from protons to uranium with LET values between 2 and about 15,000 keV.micron-1. Induction cross sections increase in the lower LET region approaching a plateau around 200 keV.micron-1. With higher LET values the dependence can no longer be described by a common curve with each ion showing a specific behaviour. With very heavy particles the influence of the penumbra becomes obvious: cross sections decrease with LET because of the reduced penumbra extensions. Classical target theory would predict cross sections to follow a simple saturation function which is not substantiated by the data. Track structure analysis as introduced by Butts and Katz in 1967 is also not able to predict the experimental results. A semi-empirical fit indicates a linear-quadratic dependence of induction cross sections on LET up to about 1000 keV.micron-1. RBE for DSB induction rises above unity reaching a maximum of about 2.5 around 200 keV.micron-1. This is different from many experiments in mammalian cells and is presumably due to differences in chromatin structure since yeast cells seem to lack a functional III histone.[Abstract] [Full Text] [Related] [New Search]