These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. Author: Spilker C, Dresbach T, Braunewell KH. Journal: J Neurosci; 2002 Sep 01; 22(17):7331-9. PubMed ID: 12196554. Abstract: Visinin-like protein-1 (VILIP-1) belongs to the family of neuronal calcium sensor (NCS) proteins, a neuronal subfamily of EF-hand [corrected] calcium-binding proteins that are myristoylated at their N termini. NCS proteins are discussed to play roles in calcium-dependent signal transduction of physiological and pathological processes in the CNS. The calcium-dependent membrane association, the so-called calcium-myristoyl switch, localizes NCS proteins to a distinct cellular signaling compartment and thus may be a critical mechanism for the coordinated regulation of signaling cascades. To study whether the biochemically defined calcium-myristoyl switch of NCS proteins can occur in living neuronal cells, the reversible and stimulus-dependent translocation of green fluorescent protein (GFP)-tagged VILIP-1 to subcellular targets was examined by fluorescence microscopy in transfected cell lines and hippocampal primary neurons. In transiently transfected NG108-15 and COS-7 cells, a translocation of diffusely distributed VILIP-1-GFP but not of myristoylation-deficient VILIP-1-GFP to the plasma membrane and to intracellular targets, such as Golgi membranes, occurred after raising the intracellular calcium concentration with a calcium ionophore. The observed calcium-dependent localization was completely reversed after depletion of intracellular calcium by EGTA. Interestingly, a fast and reversible translocation of VILIP-1-GFP and translocation of endogenous VILIP-1 to specialized membrane structures was also observed after a depolarizing stimulus or activation of glutamate receptors in hippocampal neurons. These results show for the first time the reversibility and stimulus-dependent occurrence of the calcium-myristoyl switch in living neurons, suggesting a physiological role as a signaling mechanism of NCS proteins, enabling them to activate specific targets localized in distinct membrane compartments.[Abstract] [Full Text] [Related] [New Search]