These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. Author: Ranalli TA, Tom S, Bambara RA. Journal: J Biol Chem; 2002 Nov 01; 277(44):41715-24. PubMed ID: 12200445. Abstract: Base loss is common in cellular DNA, resulting from spontaneous degradation and enzymatic removal of damaged bases. Apurinic/apyrimidinic (AP) endonucleases recognize and cleave abasic (AP) sites during base excision repair (BER). APE1 (REF1, HAP1) is the predominant AP endonuclease in mammalian cells. Here we analyzed the influences of APE1 on the human BER pathway. Specifically, APE1 enhanced the enzymatic activity of both flap endonuclease1 (FEN1) and DNA ligase I. FEN1 was stimulated on all tested substrates, regardless of flap length. Interestingly, we have found that APE1 can also inhibit the activities of both enzymes on substrates with a tetrahydrofuran (THF) residue on the 5'-downstream primer of a nick, simulating a reduced abasic site. However once the THF residue was displaced at least a single nucleotide, stimulation of FEN1 activity by APE1 resumes. Stimulation of DNA ligase I required the traditional nicked substrate. Furthermore, APE1 was able to enhance overall product formation in reconstitution of BER steps involving FEN1 cleavage followed by ligation. Overall, APE1 both stimulated downstream components of BER and prevented a futile cleavage and ligation cycle, indicating a far-reaching role in BER.[Abstract] [Full Text] [Related] [New Search]