These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low- and high-flux hemodialysis. Author: Maduell F, Navarro V, Cruz MC, Torregrosa E, Garcia D, Simon V, Ferrero JA. Journal: Am J Kidney Dis; 2002 Sep; 40(3):582-9. PubMed ID: 12200811. Abstract: BACKGROUND: Removal of medium and large solutes is poor with low-flux (LF-HD) and limited with high-flux hemodialysis (HF-HD) and on-line hemodiafiltration (OL-HDF). In clinical practice, there are few in vivo solute markers. Osteocalcin is a protein with a molecular mass of 5,800 daltons, and myoglobin is a large molecule with a molecular mass of 17,200 daltons. The aim of this study was to evaluate the impact of OL-HDF on in vivo removal of a wide spectrum of solutes (urea, creatinine, osteocalcin, beta2-microglobulin, and myoglobin) in comparison to LF-HD and HF-HD. METHODS: Twenty-three patients (15 men, 8 women) were studied. Every patient underwent three dialysis sessions with routine HD parameters. We compared 1.8-m2 polysulfone LF-HD and 1.8-m2 polysulfone HF-HD versus OL-HDF. Predialysis and postdialysis solute concentrations were measured. The percentage of reduction ratio for each solute was calculated. RESULTS: Mean values for predialysis osteocalcin, beta2-microglobulin, and myoglobin were 16.3 +/- 21 ng/mL, 27.4 +/- 5 mg/L, and 239 +/- 162 ng/mL in LF-HD, respectively. Urea and creatinine reduction ratios were similar in LF-HD and HF-HD and only 1.2% higher in OL-HDF. Osteocalcin, beta2-microglobulin, and myoglobin reduction ratios for LF-HD were negligible. Mean osteocalcin reduction rates were 54.2% +/- 12% for HF-HD versus 63.5% +/- 9% for OL-HDF (reinfusion volume, 26.8 +/- 5 L/session; P < 0.01). Mean beta2-microglobulin reduction rates were 60.1% +/- 9% for HF-HD versus 75.4% +/- 9% for OL-HDF (P < 0.01). Mean myoglobin reduction rates were 24.5% +/- 6% and 62.7% +/- 9% for HF-HD and OL-HDF, respectively (P < 0.01). CONCLUSION: LF-HD does not seem to remove solutes with a molecular weight greater than 5,800 daltons. OL-HDF provides marked enhancement of convection volume and enables a significant increase in osteocalcin and beta2-microglobulin removal. Myoglobin extraction is nil with LF-HD, very low with HF-HD, and only adequate with OL-HDF.[Abstract] [Full Text] [Related] [New Search]