These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The modulation of mitochondrial nitric-oxide synthase activity in rat brain development.
    Author: Riobo NA, Melani M, Sanjuan N, Fiszman ML, Gravielle MC, Carreras MC, Cadenas E, Poderoso JJ.
    Journal: J Biol Chem; 2002 Nov 08; 277(45):42447-55. PubMed ID: 12202479.
    Abstract:
    Different mitochondrial nitric-oxide synthase (mtNOS) isoforms have been described in rat and mouse tissues, such as liver, thymus, skeletal muscle, and more recently, heart and brain. The modulation of these variants by thyroid status, hypoxia, or gene deficiency opens a broad spectrum of mtNOS-dependent tissue-specific functions. In this study, a new NOS variant is described in rat brain with an M(r) of 144 kDa and mainly localized in the inner mitochondrial membrane. During rat brain maturation, the expression and activity of mtNOS were maximal at the late embryonic stages and early postnatal days followed by a decreased expression in the adult stage (100 +/- 9 versus 19 +/- 2 pmol of [(3)H]citrulline/min/mg of protein, respectively). This temporal pattern was opposite to that of the cytosolic 157-kDa nNOS protein. Mitochondrial redox changes followed the variations in mtNOS activity: mtNOS-dependent production of hydrogen peroxide was maximal in newborns and decreased markedly in the adult stage, thus reflecting the production and utilization of mitochondrial matrix nitric oxide. Moreover, the activity of brain Mn-superoxide dismutase followed a developmental pattern similar to that of mtNOS. Cerebellar granular cells isolated from newborn rats and with high mtNOS activity exhibited maximal proliferation rates, which were decreased by modifying the levels of either hydrogen peroxide or nitric oxide. Altogether, these findings support the notion that a coordinated modulation of mtNOS and Mn-superoxide dismutase contributes to establish the rat brain redox status and participate in the normal physiology of brain development.
    [Abstract] [Full Text] [Related] [New Search]