These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors.
    Author: Kolomietz E, Meyn MS, Pandita A, Squire JA.
    Journal: Genes Chromosomes Cancer; 2002 Oct; 35(2):97-112. PubMed ID: 12203773.
    Abstract:
    There is increasing evidence for the involvement of repetitive DNA sequences as facilitators of some of the recurrent chromosomal rearrangements observed in human tumors. The high densities of repetitive DNA, such as Alu elements, at some chromosomal translocation breakpoint regions has led to the suggestion that these sequences could provide hot spots for homologous recombination, and could mediate the translocation process and elevate the likelihood of other types of chromosomal rearrangements taking place. The Alu core sequence itself has been suggested to promote DNA strand exchange and genomic rearrangement, and it has striking sequence similarity to chi (which has been shown to stimulate recBCD-mediated recombination in Escherichia coli). Alu repeats have been shown to be involved in the generation of many constitutional gene mutations in meiotic cells, attributed to unequal homologous recombination and consequent deletions and/or duplication events. It has recently been demonstrated that similar deletion events can take place in neoplasia because several types of leukemia-associated chromosomal rearrangements frequently have submicroscopic deletions immediately adjacent to the translocation breakpoint regions. Significantly, these types of deletions appear to be more likely to take place when the regions subject to rearrangement contain a high density of Alu repeats. With the completion of the Human Genome Project, it will soon be possible to create more comprehensive maps of the distribution and densities of repetitive sequences, such as Alu, throughout the genome. Such maps will offer unique insights into the relative distribution of cancer translocation breakpoints and the localization of clusters of repetitive DNA.
    [Abstract] [Full Text] [Related] [New Search]