These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae). Author: Richmond JQ, Reeder TW. Journal: Evolution; 2002 Jul; 56(7):1498-513. PubMed ID: 12206249. Abstract: We identify instances of parallel morphological evolution in North American scincid lizards of the Eumeces skiltonianus species group and provide evidence that this system is consistent with a model of ecological speciation. The group consists of three putative species divided among two morphotypes, the small-bodied and striped E. skiltonianus and E. lagunensis versus the large-bodied and typically uniform-colored E. gilberti. Members of the group pass through markedly similar phenotypic stages during early development, but differ with respect to where terminal morphology occurs along the developmental sequence. The morphotypes also differ in habitat preference, with the large-bodied gilberti form generally inhabiting lower elevations and drier environments than the smaller, striped morphs. We inferred the phylogenetic relationships of 53 skiltonianus group populations using mtDNA sequence data from the ND4 protein-coding gene and three flanking tRNAs (900 bp total). Sampling encompassed nearly the entire geographic range of the group, and all currently recognized species and subspecies were included. Our results provide strong evidence for parallel origins of three clades characterized by the gilberti morphotype, two of which are nested within the more geographically widespread E. skiltonianus. Eumeces lagunensis was also nested among populations of E. skiltonianus. Comparative analyses using independent contrasts show that evolutionary changes in body size are correlated with differences in adult color pattern. The independently derived association of gilberti morphology with warm, arid environments suggests that phenotypic divergence is the result of adaptation to contrasting selection regimes. We provide evidence that body size was likely the target of natural selection, and that divergences in color pattern and mate recognition are probable secondary consequences of evolving large body size.[Abstract] [Full Text] [Related] [New Search]