These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The transfer of mannose to dolichol diphosphate oligosaccharides in pig liver endoplasmic reticulum. Author: Oliver GJ, Hemming FW. Journal: Biochem J; 1975 Nov; 152(2):191-9. PubMed ID: 1220679. Abstract: The transfer, catalysed by pig liver microsomal preparations, of mannose, from GDP-mannose, to lipid-linked oligosaccharides and the properties of the products are described. Solubility, hydrolytic and chromatographic data suggest that they are dolichol diphosphate derivatives. The presence of two N-acetyl groups in at least part of the heterogenous oligosaccharide portion was tentatively deduced. Reduction with borohydride of the oligosaccharide showed that the newly added mannose residues were not at its reducing end. Periodate oxidation suggested that 60% of these were at the non-reducing terminus and that 40% were positioned internally. T.l.c. showed the presence of seven oligosaccharide fractions with chromatographic mobilities corresponding to glucose oligomers with 7-13 residues. The molar proportions of the oligosaccharide fractions in the mixture were determined by borotritiide reduction and the number of mannose residues added to each oligosaccharide fraction during the incubation was calculated. Two of the oligosaccharide fractions had received on average one, or slightly more than one, mannose residue per chain during the incubation; four of the other fractions were each shown to be a mixture, 20-25% of which had received one mannose residue during the incubation and 75-80% of which had not been mannosylated during the incubation. This supported other evidence for the presence of endogenous lipid-linked oligosaccharides in the microsomal preparation which had been formed before the incubation in vitro. Evidence for the possibility of two pools of dolichol monophosphate mannose, one being more closely associated with mannosyl transfer to dolichol diphosphate oligosaccharides than the other, is also discussed.[Abstract] [Full Text] [Related] [New Search]