These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NTP technical report on the toxicity studies of Pesticide/Fertilizer Mixtures Administered in Drinking Water to F344/N Rats and B6C3F1 Mice. Author: Yang R. Journal: Toxic Rep Ser; 1993 Aug; 36():1-G3. PubMed ID: 12209188. Abstract: Toxicity studies were performed with pesticide and fertilizer mixtures representative of groundwater contamination found in California and Iowa. The California mixture was composed of aldicarb, atrazine, 1,2-dibromo-3-chloropropane, 1,2- dichloropropane, ethylene dibromide, simazine, and ammonium nitrate. The Iowa mixture contained alachlor, atrazine, cyanazine, metolachlor, metribuzin, and ammonium nitrate. The mixtures were administered in drinking water (with 512 ppm propylene glycol) to F344/N rats and B6C3F1 mice of each sex at concentrations ranging from 0.1x to 100x, where 1x represented the median concentrations of the individual chemicals found in studies of groundwater contamination from normal agricultural activities. This report focuses primarily on 26-week toxicity studies describing histopathology, clinical pathology, neurobehavior/neuropathology, and reproductive system effects. The genetic toxicity of the mixtures was assessed by determining the frequency of micronuclei in peripheral blood of mice and evaluating micronuclei and sister chromatid exchanges in splenocytes from female mice and male rats. Additional studies with these mixtures that are briefly reviewed in this report include teratology studies with Sprague-Dawley rats and continuous breeding studies with CD-1 Swiss mice. In 26-week drinking water studies of the California and the Iowa mixtures, all rats (10 per sex and group) survived to the end of the studies, and there were no significant effects on body weight gains. Water consumption was not affected by the pesticide/fertilizer contaminants, and there were no clinical signs of toxicity or neurobehavioral effects as measured by a functional observational battery, motor activity evaluations, thermal sensitivity evaluations, and startle response. There were no clear adverse effects noted in clinical pathology (including serum cholinesterase activity), organ weight, reproductive system, or histopathologic evaluations, although absolute and relative liver weights were marginally increased with increasing exposure concentration in both male and female rats consuming the Iowa mixture. In 26-week drinking water studies in mice, one male receiving the California mixture at 100x died during the study, and one control female and one female in the 100x group in the Iowa mixture study also died early. It could not be determined if the death of either of the mice in the 100x groups was related to consumption of the pesticide/fertilizer mixtures. Water consumption and body weight gains were not affected in these studies, and no signs of toxicity were noted in clinical observations or in neurobehavioral assessments. No clear adverse effects were noted in clinical pathology, reproductive system, organ weight, or histopathologic evaluations of exposed mice. The pesticide/fertilizer mixtures, when tested over a concentration range similar to that used in the 26-week studies, were found to have no effects in teratology studies or in a continuous breeding assay examining reproductive and developmental toxicity. The California and Iowa pesticide mixtures were tested for induction of micronuclei in peripheral blood erythrocytes of female mice. Results of tests with the California mixture were negative. Significant increases in micronucleated normochromatic erythrocytes were seen at the two-highest concentrations (10x and 100x) of the Iowa mixture, but the increases were within the normal range of micronuclei in historical control animals. Splenocytes of male rats and female mice exposed to these mixtures were examined for micronucleus and sister chromatid exchange frequencies. Sister chromatid exchange frequencies were marginally increased in rats and mice receiving the California mixture, but neither species exhibited increased frequencies of micronucleated splenocytes. None of these changes were considered to have biological importance. In summary, studies of potential toxicity associated with the consumption of mixtures of pesticides and a fertilizer representative of groundwater contamination in agriculturative of groundwater contamination in agricultural areas of Iowa and California failed to demonstrate any significant adverse effects in rats or mice receiving the mixtures in drinking water at concentrations as high as 100 times the median concentrations of the individual chemicals determined by groundwater surveys. NOTE: These studies were supported in part by funds from the Comprehensive Environmental Response, Compensation, and Liability Act trust fund (Superfund) by an interagency agreement with the Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.[Abstract] [Full Text] [Related] [New Search]