These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of cholera toxin B subunit-induced Ca(2+) influx in neuroblastoma cells: evidence for a voltage-independent GM1 ganglioside-associated Ca(2+) channel. Author: Fang Y, Xie X, Ledeen RW, Wu G. Journal: J Neurosci Res; 2002 Sep 01; 69(5):669-80. PubMed ID: 12210833. Abstract: The role of endogenous GM1 ganglioside in neurite outgrowth has been studied in N18 and NG108-15 neuroblastoma cells with the GM1-specific ligand cholera toxin B subunit (Ctx B), which stimulates Ca(2+) influx together with neuritogenesis. Our primary goal has been to identify the nature of the calcium channel that is modulated by GM1. An L-type voltage-operated Ca(2+) channel (VOCC) was previously proposed as the mediator of this phenomenon. This investigation, employing fura-2 fluorescent measurements and specific channel blockers and other agents, revealed that GM1 modulates a hitherto unidentified Ca(2+) channel not of the L type. It was opened by Ctx B; was permeable to Ca(2+) and Ba(2+) but not Mn(2+); and was blocked by Ni(2+), Cd(2+), and La(3+). Although most dihydropyridines inhibited Ctx B-induced Ca(2+) influx as well as neurite outgrowth at higher concentrations, they and other VOCC blockers at normally employed concentrations failed to do so, suggesting uninvolvement of VOCC. In addition, Ca(2+) influx induced by Ctx B was not mediated by cGMP-dependent or G-protein-coupled nonselective cation channels, as demonstrated by the cGMP antagonist Rp-cGMPS or the G-protein/receptor uncoupling agent suramin, respectively. Finally, Ca(2+) influx was unlikely to be due to inhibition or reversal of Na(+)-Ca(2+) exchanger via Ctx B induction of Na(+) uptake, insofar as no effect was seen on blocking Na(+) channels, inhibiting Na(+)-K(+)-ATPase, or eliminating extracellular Na(+). The results suggest that this novel channel is gated by interaction with GM1, which, when associated with the channel and bound by appropriate ligand, promotes Ca(2+) influx. This in turn induces signaling for the onset of neuritogenesis.[Abstract] [Full Text] [Related] [New Search]