These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington's disease. Author: Schiefer J, Landwehrmeyer GB, Lüesse HG, Sprünken A, Puls C, Milkereit A, Milkereit E, Kosinski CM. Journal: Mov Disord; 2002 Jul; 17(4):748-57. PubMed ID: 12210870. Abstract: Glutamate excitotoxicity has been suggested to contribute to the pathogenesis of Huntington's disease (HD). Riluzole is a substance with glutamate antagonistic properties that is used for neuroprotective treatment in amyotrophic lateral sclerosis and which is currently tested in clinical trials for treatment of HD. R6/2 transgenic mice, which express exon 1 of the human HD gene with an expanded CAG triplet repeat, serve as a well-characterized mouse model for HD with progressing neurological abnormalities and limited survival. We treated R6/2 HD transgenic mice with riluzole orally beginning at a presymptomatic stage until death to investigate its potential neuroprotective effects in this mouse model and found that survival time in the riluzole group was significantly increased in comparison to placebo-treated transgenic controls. Additionally, the progressive weight loss was delayed and significantly reduced by riluzole treatment; behavioral testing of motor coordination and spontaneous locomotor activity, however, showed no statistically significant differences. We also examined the formation of the HD characteristic neuronal intranuclear inclusions (NII) immunohistologically. At a late disease stage, striatal NII from riluzole-treated transgenic mice showed profound changes in ubiquitination, i.e., NII were less ubiquitinated and surrounded by ubiquitinated micro-aggregates. Staining with antibodies directed against the mutated huntingtin revealed no significant difference in this component of NII. Taken together, these data suggest that riluzole is a promising candidate for neuroprotective treatment in human HD.[Abstract] [Full Text] [Related] [New Search]