These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein phosphorylation regulates actomyosin-driven vesicle movement in cell extracts isolated from the green algae, Chara corallina. Author: Morimatsu M, Hasegawa S, Higashi-Fujime S. Journal: Cell Motil Cytoskeleton; 2002 Sep; 53(1):66-76. PubMed ID: 12211116. Abstract: In Characean cells endoplasmic streaming stops upon membrane depolarization accompanied by Ca(2+) entry. We investigated the mechanism of this cessation of endoplasmic streaming by reconstituting the vesicle movement in vitro. In a living cell of Chara corallina, there are a number of vesicles moving along actin cables. Vesicles in the endoplasm squeezed out of the cell into a medium containing Mg-ATP showed directional movements under a dark field microscope. When the extracted endoplasm was treated with 20 nM okadaic acid, vesicles showed only movements like the Brownian motion. When it was treated with 50 nM staurosporine, directional movements of vesicles were activated. These movements were analyzed by image processing of videomicroscopic records. Vesicle movements along F-actin filaments were also observed by merging both images of the same field by dark field microscopy and fluorescence microscopy, indicating that myosin on the vesicle surface was responsible for vesicle movements. We also examined the effects of okadaic acid and staurosporine on in vitro sliding of F-actin on Chara myosin. When Chara myosin was treated with 20 nM okadaic acid in the cell extract, the number of sliding F-actin filaments was greatly reduced. In contrast, it increased when Chara myosin was treated with 50 nM staurosporine. In addition, Chara myosin treated with protein kinase C greatly diminished its motility. These results suggest that inactivation of Chara myosin via its phosphorylation is responsible for cessation of endoplasmic streaming.[Abstract] [Full Text] [Related] [New Search]