These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Supplementing barley or rapeseed meal to dairy cows fed grass-red clover silage: I. Rumen degradability and microbial flow.
    Author: Ahvenjärvi S, Vanhatalo A, Huhtanen P.
    Journal: J Anim Sci; 2002 Aug; 80(8):2176-87. PubMed ID: 12211388.
    Abstract:
    The present study was conducted to measure the flow of microbial and nonmicrobial N fractions entering the omasal canal of lactating dairy cows fed grass-red clover silage supplemented with barley and rapeseed meal. Four ruminally cannulated Finnish Ayrshire dairy cows were fed, in a 4 x 4 Latin square design, grass-red clover silage alone or supplemented with (on DM basis) 5.1 kg/d of barley, 1.9 kg/d of rape-seed meal or 5.1 kg/d of barley and 1.9 kg/d rapeseed meal. Nonammonia N flow entering the omasal canal was fractionated into microbial and nonmicrobial N using 15N. Microbial N was fractionated into N associated with liquid-associated bacteria, particle-associated bacteria, and protozoa. Supplementation of diets with barley increased microbial N flow entering the omasal canal (P < 0.01) but had no effect on nonmicrobial N flow. Increased microbial N flow was attributed to liquid-associated bacteria and protozoa. Barley had no effect on apparent ruminal N degradability, but increased true ruminal N degradability (P < 0.01). Barley had no effect on urinary N excretion, but increased daily N retention (P = 0.03). Furthermore, barley supplementation decreased ruminal (P = 0.02) and total tract (P < 0.01) NDF digestibility. Supplementation of diets with rapeseed meal increased apparent ruminal N degradability (P < 0.01) and nonmicrobial N flow entering the omasal canal (P < 0.01), but had no effect on true ruminal N degradability. Despite higher N excretion in urine, rapeseed meal improved daily N retention (P < 0.01). Milk yield was increased (P < 0.01) by barley and rapeseed meal supplements, with the responses being additive. Responses attained with barley were primarily due to increased energy supply for ruminal microbes and improvements in energy and protein supply for the animal. However, provision of readily digestible carbohydrates in barley did not improve microbial capture of ruminal ammonia. Benefits associated with rapeseed meal supplementation were explained as an increase in the supply of ruminally undegradable protein.
    [Abstract] [Full Text] [Related] [New Search]