These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets.
    Author: Zhang P, Tao X, Li Z, Bowman RS.
    Journal: Environ Sci Technol; 2002 Aug 15; 36(16):3597-603. PubMed ID: 12214654.
    Abstract:
    Surfactant- (hexadecyltrimethylammonium, HDTMA) modified zeolite (SMZ)/zero-valent iron (ZVI) pellets having high hydraulic conductivity (9.7 cm s(-1)), high surface area (28.2 m2 g(-1)), and excellent mechanical strength were developed. Laboratory column experiments were conducted to evaluate the performance of the pellets for perchloroethylene (PCE) sorption/reduction under dynamic flow-through conditions. PCE reduction rates with the surfactant-modified pellets (SMZ/ZVI) were three times higher than the reduction rates with the unmodified pellets (zeolite/ZVI). We speculate that enhanced sorption of PCE directly onto iron surface by iron-bound HDTMA and/or an increased local PCE concentration in the vicinity of iron surface due to sorption of PCE by SMZ contributed to the enhanced PCE reduction by the SMZ/ZVI pellets. Trichloroethylene and cis-dichloroethylene production during PCE reduction increased with the surfactant-modified pellets, indicating that the surfactant modification may have favored hydrogenolysis over beta-elimination. PCE reduction rate constants increased as the travel velocity increased from 0.5 to 1.9 m d(-1), suggesting that the reduction of PCE in the column systems was mass transfer limited.
    [Abstract] [Full Text] [Related] [New Search]