These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8.
    Author: Söderström TS, Poukkula M, Holmström TH, Heiskanen KM, Eriksson JE.
    Journal: J Immunol; 2002 Sep 15; 169(6):2851-60. PubMed ID: 12218097.
    Abstract:
    Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) induce apoptosis in many different cell types. Jurkat T cells die rapidly by apoptosis after treatment with either ligand. We have previously shown that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) can act as a negative regulator of apoptosis mediated by the Fas receptor. In this study we examined whether MAPK/ERK can also act as a negative regulator of apoptosis induced by TRAIL. Activated Jurkat T cells were efficiently protected from TRAIL-induced apoptosis. The protection was shown to be MAPK/ERK dependent and independent of protein synthesis. MAPK/ERK suppressed TRAIL-induced apoptosis upstream of the mitochondrial amplification loop because mitochondrial depolarization and release of cytochrome c were inhibited. Furthermore, caspase-8-mediated relocalization and activation of Bid, a proapoptotic member of the Bcl family, was also inhibited by the MAPK/ERK signaling. The protection occurred at the level of the apoptotic initiator caspase-8, as the cleavage of caspase-8 was inhibited but the assembly of the death-inducing signaling complex was unaffected. Both TRAIL and Fas ligand have been suggested to regulate the clonal size and persistence of different T cell populations. Our previous results indicate that MAPK/ERK protects recently activated T cells from Fas receptor-mediated apoptosis during the initial phase of an immune response before the activation-induced cell death takes place. The results of this study show clearly that MAPK/ERK also participates in the inhibition of TRAIL-induced apoptosis after T cell activation.
    [Abstract] [Full Text] [Related] [New Search]