These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of microbial populations in the containment of aromatic hydrocarbons in the subsurface.
    Author: Franzmann PD, Robertson WJ, Zappia LR, Davis GB.
    Journal: Biodegradation; 2002; 13(1):65-78. PubMed ID: 12222956.
    Abstract:
    A survey of soil gases associated with gasoline stations on the Swan Coastal Plain of Western Australia has shown that 20% leak detectable amounts of petroleum. The fates of volatile hydrocarbons in the vadose zone at one contaminated site, and dissolved hydrocarbons in groundwater at another site were followed in a number of studies which are herein reviewed. Geochemical evidence from a plume of hydrocarbon-contaminated groundwater has shown that sulfate reduction rapidly developed as the terminal electron accepting process. Toluene degradation but not benzene degradation was linked to sulfate reduction. The sulfate-reducing bacteria isolated from the plume represented a new species, Desulfosporosinus meridiei. Strains of the species do not mineralise 14C-toluene in pure culture. The addition of large numbers of cells and sulfate to microcosms did stimulate toluene mineralisation but not benzene mineralisation. Attempts to follow populations of sulfate-reducing bacteria by phospholipid signatures, or Desulfosporosinus meridiei by FISH in the plume were unsuccessful, but fluorescently-labeled polyclonal antibodies were successfully used. In the vadose zone at a different site, volatile hydrocarbons were consumed in the top 0.5 m of the soil profile. The fastest measured rate of mineralisation of 14C-benzene in soils collected from the most active zone (6.5 mg kg(-1) day(-1)) could account for the majority of the flux of hydrocarbon vapourtowards the surface. The studies concluded that intrinsic remediation by subsurface microbial populations in groundwater on the Swan Coastal Plain can control transport of aromatic hydrocarbon contamination, except for the transport of benzene in groundwater. In the vadose zone, intrinsic remediation by the microbial populations in the soil profile can contain the transport of aromatic hydrocarbons, provided the physical transport of gases, in particular oxygen from the atmosphere, is not impeded by structures.
    [Abstract] [Full Text] [Related] [New Search]