These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Performance and use of current sheet antennae for RF-hyperthermia of a phantom monitored by 3 tesla MR-thermography.
    Author: Hoffmann W, Rhein KH, Wojcik F, Noeske R, Seifert F, Wlodarczyk W, Fähling H, Wust P, Rinneberg H.
    Journal: Int J Hyperthermia; 2002; 18(5):454-71. PubMed ID: 12227931.
    Abstract:
    Several MR-compatible current sheet antennae (CSA) of different height (h) (16 cm (l) x 8 cm (w) x 1-5 cm (h)) were built for simulated RF (96 MHz) hyperthermia of a medium-sized (12l) tissue-equivalent phantom inside a 3 tesla whole body tomograph. Prior to use, efficiencies of the CSA were determined by network analysis and by calorimetry. Depending on the height h of the CSA and on the thickness d(bolus) of the water bolus used for RF-coupling of the CSA to the lossy medium, their efficiency varied between 20-70% and the CSA with h = 3 cm was selected for simulated RF hyperthermia. During heating, spatial temperature distributions (20-42 degrees C) of five slices (voxel size 2 x 2 x 10mm(3)) were recorded intermittently within 4 s/slice by measuring the temperature dependent shift of the (1)H resonance frequency (125.32 MHz). A phased array consisting of two identical CSA produced distinctly different spatial temperature distributions at 0 and 180 degrees phase difference between both RF channels feeding the antennae. Within a one-dimensional heat diffusion model, the specific absorption rate (SAR) of the electromagnetic wave generated by a single antenna was deduced from the experimental data resulting in a penetration depth (1/e(2)) of approximately 4 cm.
    [Abstract] [Full Text] [Related] [New Search]