These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of steryl sulfatase activity in LNCaP human prostate cancer cells. Author: Selcer KW, Kabler H, Sarap J, Xiao Z, Li PK. Journal: Steroids; 2002 Sep; 67(10):821-6. PubMed ID: 12231117. Abstract: The enzyme steryl sulfatase may help support the growth of hormone-dependent tumors, including prostate cancers, by facilitating the conversion of circulating precursor steroids to active hormones. We sought to determine the presence of steryl sulfatase activity in the androgen-dependent human prostate cancer cell line LNCaP, and to determine if this activity was inhibited by known steryl sulfatase inhibitors. Intact LNCaP cultures had steryl sulfatase activity, as determined by conversion of [3H]estrone sulfate (E(1)S) to unconjugated steroids. The level of steryl sulfatase activity was relatively low (4.6 pmol/18 h/million cells) compared to MDA-MB-231 breast cancer cells (284.0 pmol/18 h/million cells). The observed activity in both cell lines was blocked by addition of 1 microM estrone sulfamate (EMATE), an active-site-directed, steroidal inhibitor of steryl sulfatase. Steryl sulfatase activity was also inhibited by Danazol, and by (p-O-sulfamoyl)-tetradecanoyl tyramine (C2-14), a non-steroidal inhibitor. Microsomes prepared from LNCaP cultures also showed steryl sulfatase activity, as determined by hydrolysis of [3H]E(1)S and [3H]dehydroepiandrosterone sulfate (DHEAS) to unconjugated forms. LNCaP and MDA-MB-231 microsomes both hydrolyzed E(1)S about two times faster than DHEAS. Hydrolysis of E(1)S in LNCaP and MDA-MB-231 microsomes was blocked by steryl sulfatase inhibitors with the following relative potencies: EMATE>C2-14>Danazol. These data demonstrate that LNCaP prostate cancer cells contain a steryl sulfatase with properties similar to that found in human breast cancer cells, and that the activity of this enzyme can be blocked by known steryl sulfatase inhibitors. Steryl sulfatase inhibitors may be useful as an adjuvant to androgen deprivation therapy for prostate cancer.[Abstract] [Full Text] [Related] [New Search]