These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Attenuation of zinc-induced intracellular dysfunction and neurotoxicity by a synthetic superoxide dismutase/catalase mimetic, in cultured cortical neurons.
    Author: Pong K, Rong Y, Doctrow SR, Baudry M.
    Journal: Brain Res; 2002 Sep 20; 950(1-2):218-30. PubMed ID: 12231247.
    Abstract:
    Excessive extracellular zinc may contribute to neuronal cell death following ischemia and seizures, although the mechanisms mediating zinc-induced cell death remain largely unknown. In this study, we examined potential cellular and molecular mechanisms associated with zinc neurotoxicity and determined the neuroprotective effects of the superoxide dismutase (SOD)/catalase mimetic, EUK-134. Cortical neuron cultures exposed to zinc for 24 h exhibited concentration-dependent increases in lactate dehydrogenase (LDH) release and number of apoptotic cell bodies. Both effects were prevented by treatment with EUK-134. Zinc exposure resulted in increased release of cytochrome c from the mitochondria into the cytosol. Treatment with EUK-134 blocked this parameter of mitochondrial dysfunction. Exposure of cultures to zinc for 4 h produced an elevation of reactive oxygen species (ROS) as determined by increased 2,7-dichlorofluorescein (DCF) fluorescence, which was followed by an increase in lipid peroxidation. EUK-134 completely attenuated ROS production and subsequent oxidative damage. Finally, zinc exposure activated NF-kappaB, an effect also prevented by EUK-134. These data indicate that multiple cellular and molecular mechanisms are involved in zinc neurotoxicity. As all these mechanisms appear to be sensitive to treatment with EUK-134, our data suggest that oxidative stress occurs early in the cascade of events triggered by zinc.
    [Abstract] [Full Text] [Related] [New Search]