These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response). Author: Redinbaugh MG, Campbell WH. Journal: Plant Physiol; 1993 Apr; 101(4):1249-1255. PubMed ID: 12231779. Abstract: To define further the early, or primary, events that occur in maize (Zea mays) seedlings exposed to NO3-, accumulation of chloroplast glutamine synthetase (GS2; EC 6.3.1.2) and ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1), transcripts were examined in roots and leaves. In roots, NO3- treatment caused a rapid (within 30 min), transient, and cycloheximide-independent accumulation of GS2 and Fd-GOGAT transcripts. In addition, 10 [mu]M external NO3- was sufficient to cause transcript accumulation. The induction was NO3- specific, since NH4Cl treatment did not affect mRNA levels. GS2 and Fd-GOGAT mRNA accumulation in roots was similar to that observed for nitrate reductase (NR) mRNA. Therefore, the four genes involved in NO3- assimilation (NR, nitrite reductase, GS2, and Fd-GOGAT) are expressed in the root primary response to NO3-, suggesting that all four genes can respond to the same signal transduction system. In contrast, relatively high levels of GS2 and Fd-GOGAT mRNAs were present in untreated leaf tissue, and NO3- treatment had little or no influence on transcript accumulation. Rapid, transient, and cycloheximide-independent NR mRNA expression was seen in the NO3--treated leaves, demonstrating that NO3- was not limiting. The NO3--independent constitutive expression of GS2 and Fd-GOGAT is likely due to the requirement for reassimilation of photorespiratory NH4+ in these young leaves.[Abstract] [Full Text] [Related] [New Search]