These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wheat DNA Primase (RNA Primer Synthesis in Vitro, Structural Studies by Photochemical Cross-Linking, and Modulation of Primase Activity by DNA Polymerases). Author: Laquel P, Litvak S, Castroviejo M. Journal: Plant Physiol; 1994 May; 105(1):69-79. PubMed ID: 12232187. Abstract: DNA primase synthesizes short RNA primers used by DNA polymerases to initiate DNA synthesis. Two proteins of approximately 60 and 50 kD were recognized by specific antibodies raised against yeast primase subunits, suggesting a high degree of analogy between wheat and yeast primase subunits. Gel-filtration chromatography of wheat primase showed two active forms of 60 and 110 to 120 kD. Ultraviolet-induced cross-linking with radioactive oligothymidilate revealed a highly labeled protein of 60 kD. After limited trypsin digestion of wheat (Triticum aestivum L.) primase, a major band of 48 kD and two minor bands of 38 and 17 kD were observed. In the absence of DNA polymerases, the purified primase synthesizes long RNA products. The size of the RNA product synthesized by wheat primase is considerably reduced by the presence of DNA polymerases, suggesting a modulatory effect of the association between these two enzymes. Lowering the primase concentration in the assay also favored short RNA primer synthesis. Several properties of the wheat DNA primase using oligoadenylate [oligo(rA)]-primed or unprimed polythymidilate templates were studied. The ability of wheat primase, without DNA polymerases, to elongate an oligo(rA) primer to long RNA products depends on the primer size, temperature, and the divalent cation concentration. Thus, Mn2+ ions led to long RNA products in a very wide range of concentrations, whereas with Mg2+ long products were observed around 15 mM. We studied the ability of purified wheat DNA polymerases to initiate DNA synthesis from an RNA primer: wheat DNA polymerase A showed the highest activity, followed by DNA polymerases B and CII, whereas DNA polymerase CI was unable to initiate DNA synthesis from an RNA primer. Results are discussed in terms of understanding the role of these polymerases in DNA replication in plants.[Abstract] [Full Text] [Related] [New Search]