These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kappaB.
    Author: Sung FL, Zhu TY, Au-Yeung KK, Siow YL, O K.
    Journal: Kidney Int; 2002 Oct; 62(4):1160-70. PubMed ID: 12234286.
    Abstract:
    BACKGROUND: Renal ischemia/reperfusion injury is a major cause of acute renal failure in both native kidneys and renal allografts. One important feature of such injury is monocyte/macrophage infiltration into the renal tissue. The infiltration of monocytes/macrophages can be induced by chemotactic factors produced by renal cells. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemoattractant protein for monocyte recruitment. The objective of the present study was to investigate mechanisms of elevated MCP-1 expression in rat kidney during ischemia/reperfusion injury. METHODS: The left kidney was subjected to one hour of ischemia followed by reperfusion for various time periods. The expression of MCP-1 mRNA was determined by nuclease protection assay and MCP-1 protein was identified by immunohistochemistry. Activation of a nuclear factor-kappa B (NF-kappaB) was determined by electrophoretic mobility shift assay and the level of lipid peroxides in the kidney was measured. RESULTS: There was a significant increase in MCP-1 expression in the ischemia/reperfusion kidney 2 hours after reperfusion (210% of the control). This increase was accompanied by activation of NF-kappaB, suggesting that this transcription factor might be involved in the event. The number of monocytes was significantly elevated in the kidney 3 days after ischemia/reperfusion. Pretreatment of rats with NF-kappaB inhibitors not only prevented NF-kappaB activation induced by ischemia/reperfusion, but also inhibited MCP-1 mRNA expression. Further analysis revealed that oxidative stress and increased IkappaB-alpha phosphorylation might be an underlying mechanism for NF-kappaB activation and subsequent MCP-1 mRNA expression in the ischemia/reperfusion kidney. CONCLUSION: The present study clearly demonstrates that enhanced MCP-1 expression in rat kidney during ischemia/reperfusion injury is mediated by NF-kappaB activation and oxidative stress. Elevated MCP-1 expression might be responsible for increased monocyte infiltration in the injured kidney.
    [Abstract] [Full Text] [Related] [New Search]