These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuronal nitric oxide synthase in the rabbit spinal cord visualised by histochemical NADPH-diaphorase and immunohistochemical NOS methods. Author: Kluchová D, Klimcík R, Kloc P. Journal: Gen Physiol Biophys; 2002 Jun; 21(2):163-74. PubMed ID: 12236545. Abstract: The NADPH-diaphorase (NADPH-d) staining method is widely used in the investigation of both the central and peripheral nervous systems. Neuronal nitric oxide synthase (nNOS) has previously been shown to be responsible for the NADPH-d activity in neurons. However, NADPH-d activity does not always fully represent the enzyme nNOS. We investigated the distribution of NADPH-d activity and nNOS protein in the rabbit spinal cord for all groups of neurons and Rexed's laminae. In most laminae the distribution of NADPH-d activity was identical to nNOS immunoreactivity. Both were present in the dorsal horn and in pericentral areas of the spinal cord, but some differences existed. The superficial part of the dorsal horn (laminae I-III) stained more intensely for NADPH-d than for nNOS. However, the most prominent difference was seen in the lateral part of the dorsal horn--the lateral collateral pathway (LCP). The LCP stained strongly for NADPH-d activity, while nNOS staining was absent. Although there is an excellent correlation between NADPH-d staining and nNOS immunohistochemical staining in the spinal cord in general, the presence of staining differences necessitates the use of immunohistochemistry for some specialized applications.[Abstract] [Full Text] [Related] [New Search]